
Warrior Mecanim Animation Pack ReadMe
Last Updated: Jan 07, 2024

It is highly recommended to watch Unity’s Animation Tutorial Videos before using this asset if you’re not
familiar with Mecanim: http://unity3d.com/learn/tutorials/topics/animation

Controller Overview

The Warrior Mecanim Animation Pack controller includes several Unity components which control the
character’s position in the world, and its Mecanim animator.

Components

● WarriorController - This is the main controller which every other component references.
● WarriorMovementController - This component takes care of physics and drives the character in

various movement states using SuperCharacterController.
● SuperCharacterController - This component handles ground detection and surface interaction.
● WarriorTiming - This component contains timing for locking the Warrior’s movement and action during

animation, and also timing for attack chaining windows for button presses.
● AnimatorParentMove - Enables Root Motion in the animation to drive the Warrior movement. It is

automatically attached to the game object with the Animator component at runtime.
● WarriorAnimatorEvents - This component contains placeholder methods for animation events

triggered by the animator. It is automatically attached to the game object with the Animator component
at runtime.

● WarriorData - This component contains enum data for the Warrior’s type, state, and animation
triggers.

Demo Components

These scripts are optional.

http://unity3d.com/learn/tutorials/topics/animation
https://docs.unity3d.com/Manual/script-AnimationWindowEvent.html


● WarriorInputController - This is a simple implementation of gamepad input and can be used
wholesale or as a reference for defining your own input scheme.

● WarriorInputSystemController - Alternative InputSystem control scheme for using Unity’s new
InputSystem. Contained within the InputSystem Support package in the project folder, and requires the
InputSystem Package to be installed via the Package Manager.

● GUIControls - This is an example for the demo scene and not intended for your game, but it is a great
reference for how to trigger nearly any action.

● IKHands - Applies IK to the left hand for 2 handed weapons to keep the hand properly placed if
differences in character proportion between rig and retargeted model are too great that the hand isn’t
properly positioned where it needs to be.

All scripts in the Warrior Mecanim Animation Pack use the namespace: WarriorAnims

Setup

Pre-Installation

Before attempting to use the pack, you must first ensure that the tags and inputs are correctly
defined. There is an included InputManager.preset and TagManager.preset which contains all the
settings that you can load in: https://docs.unity3d.com/Manual/Presets.html

The required tags and inputs are as follows:

https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/Installation.html
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/Installation.html
https://docs.unity3d.com/Manual/Packages.html
https://docs.unity3d.com/Manual/Presets.html


Replace Character Model

Simply drag in your character model underneath the main Warrior prefab, and then set the Controller property
of the Animator component to the Warrior Animator in the prefab folder.
The WarriorController script will find the Animator at runtime and automatically switch the correct settings
for the Animator, and also attach the WarriorAnimatorEvents script and AnimatorParentMove script.

Set Warrior Type

In the WarriorController, set the type of Warrior you’re using. This will dictate which animations will play,
and also control the timings for those animations for locking character movement while playing.

Set Target

The WarriorController script needs a target object for purposes of targeting/strafing.



Adjust Collider and Super Character Controller Spheres

If needed, adjust the Capsule Collider for your character, and also adjust the Super Character Controller
Sphere’s objects to proper size and position.

Set Super Character Controller Script Walkable Layer and Own Collider.

Set IK hand

If you’re using IKHands script then you need to set your character’s left hand joint as the script’s Left Hand Obj
and also add an empty gameObject to your character’s right hand which is connected to the Attach Left field.



You may need to position the AttachPoint gameObject in runtime when you see the hand on the weapon to get
it just right, and then you can copy the Transform and paste the values back again after stopping the game.

Setup World Colliders

For any objects that you want the character to walk over or collide with, set them as Layer: Walkable, and
make sure this is set the same in the SuperCharacterController script. Objects with primitive colliders on
them such as sphere, box, or capsule colliders won’t need any additional settings, but any object with a Mesh
Collider needs the BSPTree script attached to it. If you want to control the allowable slope height for the
object, you can attach the SuperCollisionType script to it as well.



Animation Events

Note that there are animation events for many of the animations. If you’re using the WarriorController script, it
will automatically attach the WarriorAnimatorEvents script to the gameobject in your character’s hierarchy
which contains the Animator component. The WarriorAnimatorEvents script is used to trigger weapon visibility
when Sheathing/Unsheathing weapons, and also has blank Methods if you wish to trigger sounds, effects,
and/or other code upon impact, etc.

Animator Parameters

Moving: Set in WarriorMovementController if there’s movement input and character motion.
Targeting: Set in WarriorController if targeting.
Stunned: Set in WarriorController if targeting. If true, GetHit transitions to Stunned animation.
Blocking: Set in WarriorController if pressing block.
Animation Speed: Global adjustment for all animations, set in WarriorController

Weapons: Set in WarriorController, same as WeaponSwitch function.
Jumping: Set in WarriorMovementController, 0 grounded, 1 jump, 2 falling, 3 double jump.
Velocity X: Set in WarriorMovementController, character’s sideways speed.
Velocity Z: Set in WarriorMovementController, character’s forward/backward speed.
Action: Set in WarriorController. This is used by the various animation triggers to determine which
animation to play.
Trigger Number: Set in WarriorController. This determines which node is triggered via the “Trigger”
trigger.

Questions,
comments,
requests or
suggestions:

Contact.

https://www.explosive.ws/pages/contact
http://www.explosive.ws/community/contact

